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ABSTRACT

Particle flocculation plays a major role in water treatment processes. In
flocculation kinetics models it is usually assumed that spherical particles
collide and form spherical aggregates. Real aggregates, however, are of
irregular shapes and can be considered as fractal objects. The structure
of fractal objects can be described by a fractal dimension number that
plays an important role in aggregation kinetics. Two-dimensional compu-
ter simulations of particle aggregation are carried out in this work to
directly observe the evolution of floc size and to determine their fractal
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dimension. The computer program developed in this study simulates
random particle motion as well as cluster growth. The simulation
results are visualized using Java programming language. The fractal
dimension of the simulated clusters is determined based on the linear
relationship between log-(mass of clusters) and log-(radius of clusters).
Primary forces acting on individual particles, including van der Waals,
electrostatic, magnetic dipole, and hydrodynamic interparticle forces,
are examined to determine the collision efficiency at different collision
angles, as well as the structure of the aggregates. The effect of magnetic
dipole forces on the fractal dimension and chain formation is examined. It
is shown that when the magnetic dipole force is of the same magnitude as
the double-layer force within a narrow range of zeta potential values,
one-dimensional or two-dimensional clusters may be obtained.

Key Words: Fractal dimension; Brownian flocculation; Magnetic
flocculation; Particle aggregation.

INTRODUCTION

Most of the discussions on the aggregation rate of particles in aqueous
suspensions start from the work of Smoluchowski.'"! Initially, there are
primary particles in a system, and after a period of aggregation the system con-
tains aggregates of various sizes while the total number of particles decreases.
In order to describe how fast the aggregation of primary particles and aggre-
gates proceeds, the aggregation rate is needed, which is determined by the
product of the particle collision frequency and collision efficiency.

Aggregation kinetics models are often based on spherical particles. When
two spherical primary particles collide, it is usually assumed that they form
another spherical particle. Aggregates in real systems, however, are non-
spherical. When two primary particles collide, they form a dumbbell-shaped
aggregate.'”! A third particle can attach in several different ways. In real aggre-
gation processes, aggregates containing thousands of primary particles can arise,
and it is impossible to provide a detailed description of their structure. Meakin'*’
suggested that aggregates could be recognized as fractal objects, introducing a
convenient method to approximate the structure of the aggregates. The fractal
concept introduced by Mandelbrot*! enables the aggregate structure to be
characterized in general terms but still convey useful information. Note that in
this study, particle is a general term used to describe primary particles, aggre-
gates, and clusters. Aggregates are used in the discussion of colloidal aggrega-
tion and clusters are mainly used in the discussion of the cluster-cluster model.

There are various ways to define the fractal dimension. Usually, a particle
aggregation system is described by a lattice model and the structure of
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aggregates is illustrated by volume and mass fractal dimensions. Both volume
and mass fractal dimensions are power-law relationships between length
scale and mass and volume, respectively. The mass fractal dimension is
defined by:'!

M oc RPr (1)

Here, M, which is also called the mass of a cluster, is the number of sites
located within a cluster of radius R and Dy is the mass fractal dimension.
Box counting is one of the approaches for determining the fractal dimension.
A box of size ¢ is superimposed on a fractal object. By counting the number
of boxes intersected by the fractal object, one can obtain a power law
relationship:

Npox(€) o< 72 for e — 0 (2)

For any system, one has D, < d, where d is the embedding dimension
(dimension of the embedding Euclidean space; in real systems, usually
d = 3). Cutting out an m-dimensional slice (cross section) of a Dy dimensional
fractal, which is embedded into a d-dimensional space, usually leads to a
Dy— (d —m) dimensional object. The density-density correlation function,
C(r), which is related to distance r following a power law relationship, is
defined by:'®!

C(r) ~ R0 3)

The growth of aggregates due to Brownian diffusion gives an increasing
collision radius and a reduced diffusion coefficient, and these effects tend to
cancel out, giving a constant collision rate that is not greatly dependent on
aggregate size. The hydrodynamic radius of fractal aggregates, which deter-
mines the drag and hence the diffusion coefficient, is likely to be smaller
than the outer “capture radius,” corresponding to the physical extent of the
aggregate.'”! For high degrees of aggregation, the ratio of the hydrodynamic
radius to the “capture radius” is approximately 0.6, which indicates that
Brownian collisions will occur rather more rapidly than predicted from the
rate constant. The fluid flow will flow through the voids of fractal aggregates,
and thus the porosity of fractal aggregates will affect their drag and settling
velocity. Li and Logan™' studied the permeability of fractal aggregates and
concluded that the Brinkman and Happel permeability equations give more
realistic predictions of the aggregates than the Carmen-Kozeny equation.

For smaller values of fractal dimension, the aggregate size increases
faster and can give a dramatic increase in aggregation rate.”’ An obvious
consequence of the fractal nature of aggregates is that the effective aggregate
volume will not be conserved as assumed in the derivation of collision
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rates. There will be a substantial increase in aggregate volume for typical
values of Dy, and this is the reason for the increased collision frequency.

Research on aggregation phenomena increased dramatically since the
diffusion-limited aggregation (DLA) model was introduced."®! The develop-
ment of the DLA model was stimulated by the earlier experimental works,
which demonstrated that fractal structures could be generated by the aggrega-
tion of small metal particles in a dense gas. In the Witten-Sander model, par-
ticles are added one at a time and move randomly to a growing aggregate of
particles. When the randomly moving particle collides with the aggregate, it
sticks with the aggregate. Single-particle addition is not a realistic model
since, in many aggregation processes, growth occurs as a result of cluster-
cluster encounters. Computer simulations using a Witten-Sander model and
experimental studies with a range of model colloids"'"! showed open struc-
tures with a fractal dimension of around 1.8.

If particles attach permanently to other particles at first contact, the
process is controlled entirely by diffusion, hence diffusion-limited aggregation
(DLA). When there is interparticle repulsion, so that the collision efficiency is
reduced, aggregation is then said to be reaction-limited and very different
aggregate structures can be obtained under these conditions. It was found''"
that reaction-limited aggregates are more compact than those produced by
DLA for the cluster-cluster case. When the collision efficiency is low, particles
(or aggregates) need to collide many times before sticking occurs, and thus
more opportunities exist to explore other configurations and to achieve
some degree of interpenetration.'!

Ansell and Dickinson!'?! pointed out that the aggregate structure in two
dimensions is sensitive to interparticle forces in the range of particle scale.
In addition, a rigid cluster has zero internal degrees of freedom, which
means that the monomers inside the cluster have fixed distance from each
other. Therefore, the cluster is assumed moving as a rigid single particle in
the system after it is formed.

Fractal dimension studies of aggregates in shear-flow regimes were also
reported. Wiesner''?! studied the kinetics of fractal-aggregate formation in
rapid mixing conditions and found that a 10% error is introduced in calculat-
ing the collision efficiency if the aggregate porosity (i.e., the fractal dimen-
sion) is neglected. Jiang and Logan'®' reported that the effect of fractal
dimension on collision frequencies is most apparent in shear flocculation
and least significant for Brownian flocculation.

Magnetic colloidal particles such as hematite, siderite, goethite, and magne-
tite particles in a uniform magnetic field experience a magnetic dipole force in
addition to the van der Waals, electrostatic, and hydrodynamic forces. Depend-
ing on the direction of the centerline between particles with respect to the mag-
netic field direction, the magnetic dipole force may be attractive or repulsive.



10: 03 25 January 2011

Downl oaded At:

Fractal Dimension of Particle Aggregates in Magnetic Fields 2843

When the magnetic force dominates other interparticle forces, the particles
aggregate in a preferred direction, thereby forming chains. Chain formation of
superparamagnetic latex particles in a magnetic field was investigated by Chin
et al.'* Based on experimental observations, Helgesen et al.'>' concluded
that the fractal dimension of aggregates of diffusing magnetized spheres
decreases with increasing magnetic moment. Simulation of a mixture of mag-
netic and nonmagnetic particles also showed chain formation of clusters.!'®

The present study extends the work of Tsouris and Scott"'”! to investigate
the effects on magnetic dipole forces on the fractal dimension of aggregates.
A computer simulation approach has been developed for this purpose.
Magnetic dipole, van der Waals, double layer, and hydrodynamic forces are
used to calculate the collision efficiency of particles in a reaction-limited
aggregation under Brownian diffusion. The attractive and repulsive forces
are added to give the total energy of interaction between pairs of particles
as a function of separation distance and angle with respect to the direction
of the magnetic field. Simple models leading to the formation of fractal
structures are considered. The significance of this study is that it investigates
the effect of magnetic dipole forces on fractal dimension and the effect of
fractal dimension on aggregation kinetics in the case that the magnetic
dipole force competes with the double-layer force.

THEORETICAL MODEL DEVELOPMENT

The aggregation frequency Fj; of particles under the influence of inter-
action forces is defined as the product of the collision frequency B;; and the

collision efficiency E,-j,[lg]

Fij = ByEjj “4)

Brownian motion dominates collisions between particles smaller than
1 wm; therefore, in this study, the particle collisions are predominately due
to Brownian diffusion and for dilute suspensions, only binary particle
collisions occur. The collision frequency for Brownian diffusion is given by!'®

2K (r + 1)

Bij nin )

"3 rit;
where k is the Boltzmann constant, T is the absolute temperature, w is the
viscosity of the fluid, as well as n;, r; and n;, r; are the number concentrations
and radii of particles of class i and j, respectively. The class here implies
the number of primary particles comprising the aggregate. We can also speak
of i-fold and j-fold aggregates. Equation (5) has the very important feature
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that, for particles of approximately equal size, the collision frequency becomes
independent of particle size. Physically, this behavior is because the increase
in particle size leads to a lower diffusion coefficient but a larger collision
radius, and these two effects cancel each other when particles are of nearly the
same size. For particles of different size, the collision frequency will always
be greater than that for equal-size particles.'”

The collision efficiency incorporates the effect of particle interaction
forces. If there is strong repulsion between particles, then practically no aggre-
gation occurs and the collision efficiency approaches zero. On the other hand,
the collision efficiency could be larger than one if there is an additional attrac-
tive force, such as a magnetic force. The collision efficiency can be obtained
from the solution of the generalized Smoluchowski Eq. (1) for the diffusing
particle under the action of interparticle forces,!'”!

dsT-!
(Duw/Dy) exp(Va/KT) S—j] ©)

o0

(11 ri)
where the interaction potential V, is the summation of electrostatic, van der
Waals, and magnetic potentials V4 = Ve + Vi + Vingg, Doo is the diffusion
coefficient in the absence of any interparticle forces, D, is the relative
diffusion coefficient between particles i and j, and s = r/r; is a dimensionless
separation distance between the particles. The hydrodynamic interaction is

incorporated in D,

Dy = bkT )

where b is the relative mobility of particles, a function of particle separation.!'”!

Tsouris and Scott!”! used a direction-average magnetic potential. In this
work, the original expression of the magnetic dipole force!'”! is used, which is
a function of the angle («) between the particle centerline and the direction of

the magnetic field:'*!

47TBzr?Xir3x»
_T]r-g(l —3cos’ a) (8)
l ])

2

where B is the magnetic field strength, « is the angle between the magnetic
field direction and the particle center line (a straight line through the centers
of both particles, see Fig. 1), x; and ; are volumetric magnetic susceptibilities
of particles i and j, respectively, and pu, is the magnetic permeability of
vacuum (u, = 47 x 1077 VsA~'m™"). The magnetic field is assumed to
be homogeneous in the calculation of magnetic potentials. Equation (8) is a
function of distance between particles and angle «, however, the angular
motion of particles is not considered here.

mag —

I, (s
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@4/5@

Figure 1. llustration of particle-centerline and magnetic field direction.

Two different regimes for electrostatic repulsion are used in this study,
one for large separations and another for small separations:!”!

Linear superposition approximation. The linear superposition approxi-
[21];

mation'~ " is applicable for thin double layers and large interparticle separations:
kT 7
Vg = 4me, <—> Y, Yzﬂe”d, for kl > 4 %)
e r
where
(08 .
Y; = 4 tanh 7 ) for kr > 10, ®; <8, andi=1,2 (10a)
“Poi
@, = ZekT L fori=1,2 (10b)
K = 5.552 x 107%\/1/¢,.kT, (10c)
lg@—zxﬁgﬁ) (10d)

Here, &, is the permeability of the medium, e is the electron charge, k is the
inverse of Debye length, z is the valence of the symmetric electrolyte in the
solution, [ is the shortest separation between two particles, W,; refers to the
particle surface potential, and [ is the ionic strength of the solution.

Derjaguin approximation. The Derjaguin approximation is used for
interparticle dimensionless separations smaller than those at which the
linear superposition approximation applies:**!

A(ri + 1))

» 2v, VY, 1 + exp(—«l)
\Ifii + \If{z)j 1 — exp(—«l)

s,rirj(‘l'z + ‘I’i)

Vo =

} +log{1 — exp(—ZKl)}:| (11)
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Because the determination of interparticle forces is based on the actual
volume of particles, the magnitude of these forces is assumed independent
of the morphology of the aggregates. However, the diffusivity of aggregates
is size-dependent; hence, the fractal dimension is required to be included in
calculating the diffusivity.

Once the flocculation frequency of particles is obtained as the product
of collision frequency and collision efficiency [Egs. (4)—(6)], a macroscopic
population-balance equation can be written to describe the growth of the
i-fold aggregates. In the absence of aggregate breakup, the discretized form
of the population-balance equation is given by

dl’l,' 1 i—1 N
E = 5 Z Fi(i_j)nin(i_j) — Z F,-jninj (12)
j=1 j=1

where 7 is the time and N is the total number of cluster classes in the system.
The first term on the right-hand side represents the rate of formation of i-fold
aggregates by collision of any pair of clusters, j and (i — j). Carrying out
the summation would mean counting each collision twice and hence the
factor 1/2 is included. The second term accounts for the loss of i-fold aggre-
gates by collision with any other aggregate or primary particle.

In the population balance equation, Eq. (12), if the radius of a reference
aggregate (or particle) is ry and its volume is V, for each cluster of radius
r. and volume V in the flocculation system, one can write:

Te v\'Z

o (V) (13)

Reference aggregates are perfect spheres and the mass of cluster in this
study is not the conventional mass, therefore the volume (of a reference
aggregate or of a fractal cluster) is not directly related to the mass here.
From Eq. (13), one can obtain the radius of a cluster as a function of the
fractal dimension. By substituting Eq. (13) in the collision frequency, B
[Eq. (5)], one can introduce the fractal dimension into the aggregation rate
and the population balance equation.

The magnetic potential at 0, 45, and 90 degrees between the direction of the
magnetic field and the particle-particle centerline is calculated using Eq. (8). The
collision efficiency for 0, 45, and 90 degrees can then be obtained from Eq. (6).
The collision efficiency is then used to form a sticking probability array in the
particle simulation program for the reaction-limited aggregation case.

Java, a modern computer language based on object-oriented pro-
gramming, was selected for the implementation of particle simulations. It is
a full-featured, general-purpose computer language, which has similar syntax
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as C and C++. The executable code can be run on various platforms and
operating systems.'”®! Since it is a window-based programming language,
its visualization capability is suitable for particle simulation. In simulation
programs, a class called “particle” is constructed. This particle class is an
object that contains the position of particle (or cluster) in simulation space.
It also contains attributes of single particle, cluster member, or cluster seed,
cluster size, and the number of primary particles in a cluster. This particle
class also contains a “move” method and a “paint” method. The move method
makes a particle move in the simulated space with a randomly selected direc-
tion. The paint method paints the simulation result on the screen when simu-
lation is in progress. The simulation program also generates the average
aggregate size and length-mass relationship for fractal dimension calculations.

Particles are first generated at random positions. In this initialization step,
two particles should not exist at the same position. If multi-occupation occurs,
one of the particles is relocated randomly to an empty lattice site. At this step,
the lattice contains a large number of isolated occupied sites and a few small
clusters (occupied sites connected by nearest neighbor occupancy).

At each simulation step, particles (or clusters) are selected at random with
a probability, which depends on their size in order to represent the effects of
a size-dependent diffusion coefficient, and moved by one lattice unit in a ran-
domly selected direction on the lattice. After a particle or cluster has moved,
its perimeter is examined to determine whether another object has been con-
tacted (via nearest neighbor occupancy). If another object has been contacted,
a new cluster may be formed with the probability given by the sticking prob-
ability array. Clusters are formed irreversibly in this model and the sites of a
cluster continue to move in the lattice as a single unit. If given a very long
simulation time, particles will eventually become one cluster.

There are various ways to determine the fractal dimension of an aggre-
gate; box counting is one of these methods and can be used to determine
both computer-simulated and real aggregates. In simulation systems, one
can use a log-log relationship to determine fractal dimension. From Eq. (1),
logM = Dy logR + ¢, where ¢ is a constant. By counting the radius and
mass of each particle, the fractal dimension can be obtained from the log-
radius vs. log-mass diagram.

Computer simulations can represent fractal phenomena in several ways.
Simulation procedures may offer details and insights of real processes and
thus assist in interpreting experimental results. During the computer simu-
lation, real-time cluster structures on the screen, as well as distribution of
the particle size ratio and fractal dimension, are shown. The modeling
program for the solution of the population balance equation was developed
by Tsouris and Scott''”’ in FORTRAN. It uses the EPISODE package for
solving ordinary differential equations.'**!
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RESULTS AND DISCUSSION
Sticking Probability Array

Collision efficiencies were calculated at a uniform magnetic field from
Egs. (6) and (8) for different conditions that have different magnetic dipole
forces. Three collision angles were used to obtain a sticking probability
array. Results of collision efficiencies for siderite, hematite, and goethite
particles of 0.25 wm diameter at —40mV zeta potential, 0.1 M NaCl ionic
strength, and 0.7 T magnetic field are shown in Table 1. The collision effi-
ciency in the direction parallel to the magnetic field (0 degrees) gives a
higher value, and the differences between collision efficiencies at different
angles for each species becomes more apparent when the magnetic suscepti-
bility is higher. The collision efficiencies with different collision angles form a
sticking probability array. An example of a sticking probability array for
magnetic susceptibility = 0.002 is shown in Table 2. In a sticking probability
array, a particle (cluster) is located at the center element, four corner elements
in the table give the collision efficiency at 45 degrees, elements above and
below the particle show the collision efficiency at 0 degree, and elements
from the left and the right of the center element represent the collision effi-
ciency at 90 degrees. When two particles collide together, their boundaries
are checked with the sticking probability array. If the collision efficiency is
greater than one, they will stick together. If the collision efficiency is less or
equal than zero, they will not stick together. The collision efficiency
between zero and one is used as the probability of sticking in the simulation
program.

From Eq. (6), the collision efficiency is a function of the interparticle
potential integrated with the distance between the particles. However,
the magnetic dipole force is acting not only along the center between

Table 1. Collision efficiencies for different species and collision angles.

Volumetric Collision Collision Collision
magnetic efficiency efficiency efficiency
Species susceptibility at 0° at 45° at 90°
Siderite 0.005 2.182 1.245 0
Hematite 0.002 1.077 0.833 0.584
Goethite 0.001 0.833 0.770 0.708

Notes: lonic strength = 0.1 M, zeta potential = —40 mV, magnetic field strength =
0.7 T, Hamaker constant = 5 x 10720J, and r; = r; = 0.25 um.
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Table 2. Examples of the sticking probability array.

1.245 2.900 1.245
0 particle 0
1.245 2.900 1.245
0 14.070 0
0 particle 0
0 14.070 0

Notes: Hamaker constant=5 x 1072°J, r; = r;=10.25 pm,
volumetric magnetic  susceptibility = 0.002, and zeta
potential = —40mV: (a), magnetic field strength = 1T, ionic
strength = 0.1 M, (b) magnetic field strength = 22.5T, ionic
strength = 0.001 M.

particles but also normal to the centerline. Figure 2 shows the total
dimensionless potential, normalized by k7, at different angles «. At
a = 45°, the magnetic force is still attractive, while at 90° it becomes
repulsive (positive).

100
&
§ 80 A — 0
& o604 W [ 45
2 401 m—
8 20 A
8 Tt e ]
R7) 0 U
5
£ -20
a

-40 T T T T

0 002 004 006 008 0.1

Distance Between Particles (um)

Figure 2. Dimensionless total interparticle potential as a function of the angle
between the particle-particle centerline and the magnetic-field direction. (The calcu-
lations are not smooth at distances between 0.03 and 0.04 p.m because we are assuming
two regimes for the electrostatic potential.)
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Cluster-Cluster Aggregation Simulation

In the cluster-cluster aggregation model, all clusters are moving randomly
with a probability related to their size. When two particles collide, they stick
together. Furthermore, when a cluster collides with another cluster, they form
a new bigger cluster. Figure 3 shows simulation results of the cluster-
cluster aggregation model for a system with no magnetic forces present.
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Figure 3. Simulation results using the cluster-cluster aggregation model without
magnetic forces; particle number = 475, particle size =3 pixels: (a) simulation
step = 10; (b) simulation step = 1977.
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For each cluster, its radius and number of particles inside the radius can be
measured. By plotting mass (number of sites occupied within a cluster) vs.
radius on a log-log scale, one can obtain the fractal dimension from the
slope. When a cluster collides with another cluster, the void space in the
new cluster will be bigger than the void space of a cluster colliding with a
particle.

Meakin®! indicated that if Dy= d (Euclidean dimensionality with a value
of 2.0 for 2-D simulation), as clusters grow larger and larger they will
approach a constant limiting density. If D,<d, however, the density-
density correlation C(r) of the cluster will become smaller and smaller as
the cluster grows larger and larger. The simulation results of this work
agree with this trend. Figure 4a shows the density-density correlations func-
tion of different cluster radii obtained from the simulation. If the density-
density correlation is plotted vs. radius on a log-log scale, the slope will be
a constant and equal to (Dy— d). Figure 4b shows the log-log result from
the simulation. It was found that (D; — d) = —0.79. The theoretical fractal
dimension obtained from the density-density function should be around
(2.0-0.79) = 1.21. Figure 4c gives D= 1.21 using the method of Eq. (1).

Effect of Magnetic Dipole Forces on Fractal Dimension

By comparing the systems with and without magnetic dipole forces, it
is found that the fractal dimension is smaller when magnetic dipole forces
are present. The magnetic dipole force between particles is attractive along
the direction of the magnetic field. Therefore, when the magnetic dipole
force is strong enough, it will make particles collide and stick in the direction
parallel to that of the magnetic field and form chain-like clusters. The fractal
dimension for different magnetic dipole forces was estimated with results
shown in Table 3. It was found that the fractal dimension decreases with
increasing magnetic susceptibility (or magnetic field).

Results on aggregate morphology are shown in Figs. Sa—c for 0.1 M ionic
strength, using the sticking probability arrays listed in Table 4. The aggregates
do not have a chain structure, even when the probability of aggregation in the
direction normal to the field is zero. The reason for this behavior is that the
aggregation probability at 45° is close to 1 as it is at 0°. Thus, the simulation
should be extended to account for the tangential magnetic dipole force, which
could align the particles in the direction of magnetic field. Moreover, as the
particles aggregate, they should be allowed to move around each other for
the lowest energy situation. This has not been accounted in the modeling
approach so far. However, it can be seen that the clusters are closer to
chain-like aggregates at a higher magnetic-field strength.
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Figure 4. Initial particle number = 600, simulation step = 800, particle size =
3 pixels, Hamaker constant = 5 x 10~ 2°J, and zeta potential = —60 mV. (a) Density-
density correlation function of different cluster radii in cluster-cluster aggregation
model; (b) density-density correlation function vs. radius on log-log scale; (c) fractal

dimension of clusters.
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Table 3. Effect of magnetic dipole forces on fractal dimension.

(a) Volumetric magnetic susceptibility

Magnetic field strength (T) 0.005 0.002 0.001

Fractal dimension

0.1 1.188 1.234 1.246
1 1.219 1.208 1.185
2 1.288 1.198 1.104
(b) Volumetric magnetic susceptibility
Magnetic field strength (T) 0.005 0.002 0.001

Fractal dimension

22.5 1.231 1.326 2.000
25 1.190 1.086 0.908
Notes: Zeta potential = —40mV, Hamaker constant =5 X 10720], and

r; = r; = 0.25 pum: (a) ionic strength = 0.1 M, (b) ionic strength = 0.001 M.

Effect of Fractal Dimension on Collision Efficiency and
Collision Frequency

Due to the fractal structure of the aggregates, their hydrodynamic
radius is larger than if they were spherical particles. Hence, according to
Egs. (4)—(6), the collision efficiency is different from that of spherical
particles. The effect of fractal dimension on the collision frequency and
collision efficiency under Brownian diffusion is calculated in Figs. 6a and
b vs. the aggregate size ratio of spherical particles. The collision efficiency
and collision frequency of the fractal aggregates are normalized to those of
ideal spheres. Figure 6a shows that the normalized collision efficiency
decreases with increasing fractal dimension of aggregates. In our previous
studies,”! it was found that the collision efficiency decreases with increas-
ing aggregate size ratio. For fractal objects, the smaller the fractal dimen-
sion is, the larger the hydrodynamic radius of the object becomes. Hence,
the aggregate size ratio of fractal objects decreases and the difference
in the collision efficiency increases as the fractal dimension decreases. In
Fig. 6b, it is found that the normalized collision frequency increases
rapidly when the fractal dimension is small. This phenomenon occurs
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Figure 5. Simulation results showing the effect of field strength on the morphology
of aggregates. Arrows indicate the direction of magnetic field and their length are
proportional to the strength of the magnetic field. Particle number = 600, simulation
step = 800, particle size =3 pixels, volumetric magnetic susceptibility = 0.002,
zeta potential = —60mV, and Hamaker constant =5 x 10~ 2°J. (a) Magnetic field
strength = 0.1 T; (b) magnetic field strength = 0.7 T; (c) magnetic field strength = 1 T.
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Table 4. Sticking probability array for different magnetic
field strength.

(@)

0.919 1.377 0.919
0 particle 0
0.919 1.377 0.919
(b)

0.833 1.077 0.833
0.584 particle 0.584
0.833 1.077 0.833
(©)

0.751 0.756 0.751
0.746 particle 0.746
0.751 0.756 0.751

Notes:  Volumetric ~ magnetic  susceptibility = 0.002,
Hamaker constant = 5 x 1072°J , zeta potential = —40mV,
ionic strength = 0.1 M, and r; = r; = 0.25 pum; (a) magnetic
field strength = 1T, (b) magnetic field strength = 0.7T,
(c) magnetic field strength = 0.1 T.

because aggregates of small fractal dimension expand much faster than
those of large fractal dimension.

Fractal Dimension as a Function of Simulation Steps

The fractal dimension was calculated every two hundred simulation
steps and it was found to increase with the number of steps. After a longer
simulation time, the fractal dimension dropped to a steady value (Fig. 7).
A stable fractal dimension can be found when there are enough clusters in
the system. The fluctuations in the fractal dimension are due to the fact that
the number of clusters decreases as the simulation step increases. Spicer
et al.”?®! indicated that the fractal dimension increases from 1.1 to 1.4 in
shear-induced flocculation for a 6h period. The simulation results of this
study are similar to the fractal dimension growth trend in their work.

Influence of Initial Particle Concentration

By varying the initial particle number of the same size particles, it was
found that the fractal dimension for varying particle population is different.
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Figure 6. Effect of fractal dimension on (a) collision efficiency normalized to the
collision efficiency of spherical aggregates (Dy= 3), and on (b) collision frequency
normalized to collision frequency of spherical aggregates. Zeta potential = —60mV,
Hamaker constant = 5 x 10 2°J.

The system with a higher initial particle number (or occupied lattice per unit
area) will have larger fractal dimension. Figures 4c and 8 show two regression
results with different initial particle populations. In Fig. 4c, 600 particles are
used in the simulation. After 800 steps, a fractal dimension of 1.28 is obtained.
In Fig. 8, 200 particles are used in the system. After 800 steps the fractal
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Figure 7. Effect of simulation steps on fractal dimension: particle number = 600,
particle size = 3 pixels, zeta potential = —60 mV, volumetric magnetic susceptibility =
0.002, magnetic field strength = 1T, Hamaker constant = 5 x 10 2°]J.

dimension is about 1.038. The reason for this behavior is that for a higher
initial concentration, small particles can easily collide into a cluster; thus,
the fractal dimension becomes larger.

Meakin'®! used two different initial particle concentrations (initial particle
number per total lattice number) in their simulations. The observed fractal
dimension approached a limiting value when initial particle concentration
approaches zero. For higher concentration, they obtained a larger fractal
dimension. According to Figs. 4c and 8, the simulation results of the
present work agree with this conclusion.

Population Balance Equation

There are many input parameters for the population balance equation
model, including simulation time, number of volume classes, primary particle
size, initial number of particles, particle density and concentration, viscosity,
temperature, Hamaker constant, zeta potential, and ionic strength. Figure 9
shows a comparison of the increase in mean aggregate diameter with time
for fractal dimensions of 3.0 and 2.4. The experimental values of average
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Figure 8. Effect of initial particle number on fractal dimension (in comparison with
Fig. 4c): particle number = 200, particle size = 3 pixels, zeta potential = —60mV,
magnetic susceptibility = 0.002, magnetic field strength = 1 T, and Hamaker constant =
5x 1071

particle diameter vs. time were obtained from Tsouris and Scott."'”! A fractal
dimension 3.0 (the solid line in Fig. 9) means that we do not consider the
fractal dimension effect in the population balance equation. The dashed line
is for a fractal dimension of 2.4, which is determined by implementing differ-
ent values of fractal dimension to the population-balance model to find the
best-fit since the cluster-cluster model developed in this work uses a two-
dimensional lattice system. With a smaller fractal dimension, aggregates
grow faster than with a larger fractal dimension and are closer to the exper-
imental values. Based on the results in Fig. 9, we conclude that the fractal
dimension is an important parameter for determining the average size of
particle aggregates with time.

SUMMARY AND CONCLUSIONS

Aggregates are often irregular in natural systems and can be treated as
fractal objects. A fractal dimension can be used to describe their structure.
The fractal dimension was introduced in a population-balance-equation
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Figure 9. Effect of fractal dimension on the growth of the average particle diameter
from the population balance equation. Magnetic field strength = 6 Tesla (T), magnetic
susceptibility = 0.002, Hamaker constant =5 x 10~ 2°J, zeta potential = —50mV,
and particle concentration = 3.8 mg/L.

model to investigate the effect on the flocculation rate under Brownian diffu-
sion. It was found that the fractal dimension is an important parameter in floc-
culation kinetics. Systems with a smaller fractal dimension have a higher
flocculation rate, and the resulting mean aggregate diameter becomes bigger.

For a self-similar aggregate, a power-law relationship is obtained between
radius (length) and mass. Simulation results in this work were in agreement
with this power-law relationship. In the cluster-cluster aggregation model,
all clusters in the simulation system are selected with a collision probability
related to their size. The collision efficiency and frequency become larger
after the fractal dimension is considered in the simulation. The fractal dimen-
sion was obtained by plotting the relationship between density-density corre-
lation vs. radius of clusters on a log-log scale. The fractal dimension obtained
from the cluster-cluster aggregation model is between 1.0 and 1.6 for two-
dimensional aggregates. Simulation results also indicate that the morphology
of magnetized particles is different in a strong uniform magnetic field. The
fractal dimension is smaller when a magnetic force is present, which is due
to the chain formation of aggregates. The magnetic susceptibility of the
particles and magnetic-field strength were found to be important parameters
in this simulation.
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NOMENCLATURE

Hamaker constant (J)

magnetic field strength (T)

relative mobility function

density-density correlation function

embedding dimension

fractal dimension

diffusion coefficient in the absence of any interparticle forces
(m?s™")

relative diffusion coefficient (m*s™ ')

electron charge = 1.6 x 10~ '°C

collision efficiency

aggregation frequency (m>s™ ")

ionic strength of the solution (M)

subscript to indicate the class of a cluster

Boltzmann constant = 1.38 x 10" JK !

shortest separation between two particles (m)

mass of a cluster

number of clusters classes in the system

number of boxes intersected by the fractal object

numbers of particles per unit volume in the cluster class i and j
distance between particles (m)

radius of a cluster (m)

particle radii (m)

dimensionless distance between two spheres

time (s)

absolute temperature (K)

total interparticle potential (V C)

electrostatic potential (V C)

magnetic potential (V C)

van der Waals potential (V C)

angle between the particle centerline and the direction of the
magnetic field

collision frequency

volumetric magnetic susceptibilities of particle i and j

box size that superimposed on the fractal object
permeability of medium = 89 x 10~ (CV™'m™ ") for water
inverse of Debye length (m ™)

fluid viscosity (kgm 's™ ")

magnetic permeability of vacuum (47 x 1077 VsA™'m™")
particle surface potential (V)
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