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ABSTRACT

Particle flocculation plays a major role in water treatment processes. In

flocculation kinetics models it is usually assumed that spherical particles

collide and form spherical aggregates. Real aggregates, however, are of

irregular shapes and can be considered as fractal objects. The structure

of fractal objects can be described by a fractal dimension number that

plays an important role in aggregation kinetics. Two-dimensional compu-

ter simulations of particle aggregation are carried out in this work to

directly observe the evolution of floc size and to determine their fractal
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dimension. The computer program developed in this study simulates

random particle motion as well as cluster growth. The simulation

results are visualized using Java programming language. The fractal

dimension of the simulated clusters is determined based on the linear

relationship between log-(mass of clusters) and log-(radius of clusters).

Primary forces acting on individual particles, including van der Waals,

electrostatic, magnetic dipole, and hydrodynamic interparticle forces,

are examined to determine the collision efficiency at different collision

angles, as well as the structure of the aggregates. The effect of magnetic

dipole forces on the fractal dimension and chain formation is examined. It

is shown that when the magnetic dipole force is of the same magnitude as

the double-layer force within a narrow range of zeta potential values,

one-dimensional or two-dimensional clusters may be obtained.

Key Words: Fractal dimension; Brownian flocculation; Magnetic

flocculation; Particle aggregation.

INTRODUCTION

Most of the discussions on the aggregation rate of particles in aqueous

suspensions start from the work of Smoluchowski.[1] Initially, there are

primary particles in a system, and after a period of aggregation the system con-

tains aggregates of various sizes while the total number of particles decreases.

In order to describe how fast the aggregation of primary particles and aggre-

gates proceeds, the aggregation rate is needed, which is determined by the

product of the particle collision frequency and collision efficiency.

Aggregation kinetics models are often based on spherical particles. When

two spherical primary particles collide, it is usually assumed that they form

another spherical particle. Aggregates in real systems, however, are non-

spherical. When two primary particles collide, they form a dumbbell-shaped

aggregate.[2] A third particle can attach in several different ways. In real aggre-

gation processes, aggregates containing thousands of primary particles can arise,

and it is impossible to provide a detailed description of their structure. Meakin[3]

suggested that aggregates could be recognized as fractal objects, introducing a

convenient method to approximate the structure of the aggregates. The fractal

concept introduced by Mandelbrot[4,5] enables the aggregate structure to be

characterized in general terms but still convey useful information. Note that in

this study, particle is a general term used to describe primary particles, aggre-

gates, and clusters. Aggregates are used in the discussion of colloidal aggrega-

tion and clusters are mainly used in the discussion of the cluster-cluster model.

There are various ways to define the fractal dimension. Usually, a particle

aggregation system is described by a lattice model and the structure of

Chin et al.2840
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aggregates is illustrated by volume and mass fractal dimensions. Both volume

and mass fractal dimensions are power-law relationships between length

scale and mass and volume, respectively. The mass fractal dimension is

defined by:[2]

M / RDf ð1Þ

Here, M, which is also called the mass of a cluster, is the number of sites

located within a cluster of radius R and Df is the mass fractal dimension.

Box counting is one of the approaches for determining the fractal dimension.

A box of size 1 is superimposed on a fractal object. By counting the number

of boxes intersected by the fractal object, one can obtain a power law

relationship:

Nboxð1Þ/ 1ÿDf for 1 ÿ! 0 ð2Þ

For any system, one has Df � d, where d is the embedding dimension

(dimension of the embedding Euclidean space; in real systems, usually

d ¼ 3). Cutting out an m-dimensional slice (cross section) of a Df dimensional

fractal, which is embedded into a d-dimensional space, usually leads to a

Df2 (d2m) dimensional object. The density-density correlation function,

C(r), which is related to distance r following a power law relationship, is

defined by:[6]

CðrÞ � RÿðdÿDf Þ ð3Þ

The growth of aggregates due to Brownian diffusion gives an increasing

collision radius and a reduced diffusion coefficient, and these effects tend to

cancel out, giving a constant collision rate that is not greatly dependent on

aggregate size. The hydrodynamic radius of fractal aggregates, which deter-

mines the drag and hence the diffusion coefficient, is likely to be smaller

than the outer “capture radius,” corresponding to the physical extent of the

aggregate.[2] For high degrees of aggregation, the ratio of the hydrodynamic

radius to the “capture radius” is approximately 0.6,[7] which indicates that

Brownian collisions will occur rather more rapidly than predicted from the

rate constant. The fluid flow will flow through the voids of fractal aggregates,

and thus the porosity of fractal aggregates will affect their drag and settling

velocity. Li and Logan[8] studied the permeability of fractal aggregates and

concluded that the Brinkman and Happel permeability equations give more

realistic predictions of the aggregates than the Carmen-Kozeny equation.

For smaller values of fractal dimension, the aggregate size increases

faster and can give a dramatic increase in aggregation rate.[9] An obvious

consequence of the fractal nature of aggregates is that the effective aggregate

volume will not be conserved as assumed in the derivation of collision

Fractal Dimension of Particle Aggregates in Magnetic Fields 2841
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rates. There will be a substantial increase in aggregate volume for typical

values of Df, and this is the reason for the increased collision frequency.

Research on aggregation phenomena increased dramatically since the

diffusion-limited aggregation (DLA) model was introduced.[10] The develop-

ment of the DLA model was stimulated by the earlier experimental works,

which demonstrated that fractal structures could be generated by the aggrega-

tion of small metal particles in a dense gas. In the Witten-Sander model, par-

ticles are added one at a time and move randomly to a growing aggregate of

particles. When the randomly moving particle collides with the aggregate, it

sticks with the aggregate. Single-particle addition is not a realistic model

since, in many aggregation processes, growth occurs as a result of cluster-

cluster encounters. Computer simulations using a Witten-Sander model and

experimental studies with a range of model colloids[11] showed open struc-

tures with a fractal dimension of around 1.8.

If particles attach permanently to other particles at first contact, the

process is controlled entirely by diffusion, hence diffusion-limited aggregation

(DLA). When there is interparticle repulsion, so that the collision efficiency is

reduced, aggregation is then said to be reaction-limited and very different

aggregate structures can be obtained under these conditions. It was found[11]

that reaction-limited aggregates are more compact than those produced by

DLA for the cluster-cluster case. When the collision efficiency is low, particles

(or aggregates) need to collide many times before sticking occurs, and thus

more opportunities exist to explore other configurations and to achieve

some degree of interpenetration.[2]

Ansell and Dickinson[12] pointed out that the aggregate structure in two

dimensions is sensitive to interparticle forces in the range of particle scale.

In addition, a rigid cluster has zero internal degrees of freedom, which

means that the monomers inside the cluster have fixed distance from each

other. Therefore, the cluster is assumed moving as a rigid single particle in

the system after it is formed.

Fractal dimension studies of aggregates in shear-flow regimes were also

reported. Wiesner[13] studied the kinetics of fractal-aggregate formation in

rapid mixing conditions and found that a 10% error is introduced in calculat-

ing the collision efficiency if the aggregate porosity (i.e., the fractal dimen-

sion) is neglected. Jiang and Logan[9] reported that the effect of fractal

dimension on collision frequencies is most apparent in shear flocculation

and least significant for Brownian flocculation.

Magnetic colloidal particles such as hematite, siderite, goethite, andmagne-

tite particles in a uniform magnetic field experience a magnetic dipole force in

addition to the van der Waals, electrostatic, and hydrodynamic forces. Depend-

ing on the direction of the centerline between particles with respect to the mag-

netic field direction, the magnetic dipole force may be attractive or repulsive.

Chin et al.2842
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When the magnetic force dominates other interparticle forces, the particles

aggregate in a preferred direction, thereby forming chains. Chain formation of

superparamagnetic latex particles in a magnetic field was investigated by Chin

et al.[14] Based on experimental observations, Helgesen et al.[15] concluded

that the fractal dimension of aggregates of diffusing magnetized spheres

decreases with increasing magnetic moment. Simulation of a mixture of mag-

netic and nonmagnetic particles also showed chain formation of clusters.[16]

The present study extends the work of Tsouris and Scott[17] to investigate

the effects on magnetic dipole forces on the fractal dimension of aggregates.

A computer simulation approach has been developed for this purpose.

Magnetic dipole, van der Waals, double layer, and hydrodynamic forces are

used to calculate the collision efficiency of particles in a reaction-limited

aggregation under Brownian diffusion. The attractive and repulsive forces

are added to give the total energy of interaction between pairs of particles

as a function of separation distance and angle with respect to the direction

of the magnetic field. Simple models leading to the formation of fractal

structures are considered. The significance of this study is that it investigates

the effect of magnetic dipole forces on fractal dimension and the effect of

fractal dimension on aggregation kinetics in the case that the magnetic

dipole force competes with the double-layer force.

THEORETICAL MODEL DEVELOPMENT

The aggregation frequency Fij of particles under the influence of inter-

action forces is defined as the product of the collision frequency bij and the

collision efficiency Eij,
[18]

Fij ¼ bijEij ð4Þ

Brownian motion dominates collisions between particles smaller than

1mm; therefore, in this study, the particle collisions are predominately due

to Brownian diffusion and for dilute suspensions, only binary particle

collisions occur. The collision frequency for Brownian diffusion is given by[18]

bij ¼
2

3

kT

m

ðri þ rjÞ
2

rirj
ninj ð5Þ

where k is the Boltzmann constant, T is the absolute temperature, m is the

viscosity of the fluid, as well as ni, ri and nj, rj are the number concentrations

and radii of particles of class i and j, respectively. The class here implies

the number of primary particles comprising the aggregate. We can also speak

of i-fold and j-fold aggregates. Equation (5) has the very important feature
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that, for particles of approximately equal size, the collision frequency becomes

independent of particle size. Physically, this behavior is because the increase

in particle size leads to a lower diffusion coefficient but a larger collision

radius, and these two effects cancel each other when particles are of nearly the

same size. For particles of different size, the collision frequency will always

be greater than that for equal-size particles.[2]

The collision efficiency incorporates the effect of particle interaction

forces. If there is strong repulsion between particles, then practically no aggre-

gation occurs and the collision efficiency approaches zero. On the other hand,

the collision efficiency could be larger than one if there is an additional attrac-

tive force, such as a magnetic force. The collision efficiency can be obtained

from the solution of the generalized Smoluchowski Eq. (1) for the diffusing

particle under the action of interparticle forces,[17]

Eij ¼ ð1þ rj=riÞ

ð

1

ð1þrj=riÞ

ðD1=DijÞ expðVA=kTÞ
ds

s2

� �ÿ1

ð6Þ

where the interaction potential VA is the summation of electrostatic, van der

Waals, and magnetic potentials VA ¼ Velþ Vvdwþ Vmag, D1 is the diffusion

coefficient in the absence of any interparticle forces, Dij is the relative

diffusion coefficient between particles i and j, and s ¼ r/ri is a dimensionless

separation distance between the particles. The hydrodynamic interaction is

incorporated in Dij,

Dij ¼ bkT ð7Þ

where b is the relative mobility of particles, a function of particle separation.[17]

Tsouris and Scott[17] used a direction-average magnetic potential. In this

work, the original expression of the magnetic dipole force[19] is used, which is

a function of the angle (a) between the particle centerline and the direction of

the magnetic field:[20]

Vmag ¼
4pB2r3i xir

3
j xj

9mo s
ri þ rj

2

� �3
ð1ÿ 3 cos2 aÞ ð8Þ

where B is the magnetic field strength, a is the angle between the magnetic

field direction and the particle center line (a straight line through the centers

of both particles, see Fig. 1), xi and xj are volumetric magnetic susceptibilities

of particles i and j, respectively, and mo is the magnetic permeability of

vacuum (mo ¼ 4p � 1027 VsA21m21). The magnetic field is assumed to

be homogeneous in the calculation of magnetic potentials. Equation (8) is a

function of distance between particles and angle a, however, the angular

motion of particles is not considered here.

Chin et al.2844
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Two different regimes for electrostatic repulsion are used in this study,

one for large separations and another for small separations:[17]

Linear superposition approximation. The linear superposition approxi-

mation[21] is applicable for thin double layers and large interparticle separations:

Vel ¼ 4p1r
kT

e

� �2

Y1Y2
rirj

r
eÿkl; for kl � 4 ð9Þ

where

Yi ¼ 4 tanh
Fi

4

� �

; for kr � 10;Fi , 8; and i ¼ 1; 2 ð10aÞ

Fi ¼
zeCoi

kT
; for i ¼ 1; 2 ð10bÞ

k ; 5:552� 10ÿ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I=1rkT
p

; ð10cÞ

l ffi ðsÿ 2Þ
ri þ rj

2

� �

: ð10dÞ

Here, 1r is the permeability of the medium, e is the electron charge, k is the

inverse of Debye length, z is the valence of the symmetric electrolyte in the

solution, l is the shortest separation between two particles, Coi refers to the

particle surface potential, and I is the ionic strength of the solution.

Derjaguin approximation. The Derjaguin approximation is used for

interparticle dimensionless separations smaller than those at which the

linear superposition approximation applies:[22]

Vel ¼
1rrirj C2

oi þC2
oj

� �

4 ri þ rj
ÿ �

�
2CoiCoj

C2
oi þC2

oj

log
1þ exp ÿklð Þ

1ÿ exp ÿklð Þ

� �

þ log 1ÿ exp ÿ2klð Þ
� 	

" #

ð11Þ

Figure 1. Illustration of particle-centerline and magnetic field direction.
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Because the determination of interparticle forces is based on the actual

volume of particles, the magnitude of these forces is assumed independent

of the morphology of the aggregates. However, the diffusivity of aggregates

is size-dependent; hence, the fractal dimension is required to be included in

calculating the diffusivity.

Once the flocculation frequency of particles is obtained as the product

of collision frequency and collision efficiency [Eqs. (4)–(6)], a macroscopic

population-balance equation can be written to describe the growth of the

i-fold aggregates. In the absence of aggregate breakup, the discretized form

of the population-balance equation is given by

dni

dt
¼

1

2

X

iÿ1

j¼1

FiðiÿjÞninðiÿjÞ ÿ
X

N

j¼1

Fijninj ð12Þ

where t is the time and N is the total number of cluster classes in the system.

The first term on the right-hand side represents the rate of formation of i-fold

aggregates by collision of any pair of clusters, j and (i2 j). Carrying out

the summation would mean counting each collision twice and hence the

factor 1/2 is included. The second term accounts for the loss of i-fold aggre-

gates by collision with any other aggregate or primary particle.

In the population balance equation, Eq. (12), if the radius of a reference

aggregate (or particle) is r0 and its volume is V0, for each cluster of radius

re and volume V in the flocculation system, one can write:

re

r0
¼

V

V0

� �1=Df

ð13Þ

Reference aggregates are perfect spheres and the mass of cluster in this

study is not the conventional mass, therefore the volume (of a reference

aggregate or of a fractal cluster) is not directly related to the mass here.

From Eq. (13), one can obtain the radius of a cluster as a function of the

fractal dimension. By substituting Eq. (13) in the collision frequency, bij

[Eq. (5)], one can introduce the fractal dimension into the aggregation rate

and the population balance equation.

The magnetic potential at 0, 45, and 90 degrees between the direction of the

magnetic field and the particle-particle centerline is calculated using Eq. (8). The

collision efficiency for 0, 45, and 90 degrees can then be obtained from Eq. (6).

The collision efficiency is then used to form a sticking probability array in the

particle simulation program for the reaction-limited aggregation case.

Java, a modern computer language based on object-oriented pro-

gramming, was selected for the implementation of particle simulations. It is

a full-featured, general-purpose computer language, which has similar syntax

Chin et al.2846
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as C and Cþþ. The executable code can be run on various platforms and

operating systems.[23] Since it is a window-based programming language,

its visualization capability is suitable for particle simulation. In simulation

programs, a class called “particle” is constructed. This particle class is an

object that contains the position of particle (or cluster) in simulation space.

It also contains attributes of single particle, cluster member, or cluster seed,

cluster size, and the number of primary particles in a cluster. This particle

class also contains a “move” method and a “paint” method. The move method

makes a particle move in the simulated space with a randomly selected direc-

tion. The paint method paints the simulation result on the screen when simu-

lation is in progress. The simulation program also generates the average

aggregate size and length-mass relationship for fractal dimension calculations.

Particles are first generated at random positions. In this initialization step,

two particles should not exist at the same position. If multi-occupation occurs,

one of the particles is relocated randomly to an empty lattice site. At this step,

the lattice contains a large number of isolated occupied sites and a few small

clusters (occupied sites connected by nearest neighbor occupancy).

At each simulation step, particles (or clusters) are selected at random with

a probability, which depends on their size in order to represent the effects of

a size-dependent diffusion coefficient, and moved by one lattice unit in a ran-

domly selected direction on the lattice. After a particle or cluster has moved,

its perimeter is examined to determine whether another object has been con-

tacted (via nearest neighbor occupancy). If another object has been contacted,

a new cluster may be formed with the probability given by the sticking prob-

ability array. Clusters are formed irreversibly in this model and the sites of a

cluster continue to move in the lattice as a single unit. If given a very long

simulation time, particles will eventually become one cluster.

There are various ways to determine the fractal dimension of an aggre-

gate; box counting is one of these methods and can be used to determine

both computer-simulated and real aggregates. In simulation systems, one

can use a log-log relationship to determine fractal dimension. From Eq. (1),

logM ¼ Df logRþ c, where c is a constant. By counting the radius and

mass of each particle, the fractal dimension can be obtained from the log-

radius vs. log-mass diagram.

Computer simulations can represent fractal phenomena in several ways.

Simulation procedures may offer details and insights of real processes and

thus assist in interpreting experimental results. During the computer simu-

lation, real-time cluster structures on the screen, as well as distribution of

the particle size ratio and fractal dimension, are shown. The modeling

program for the solution of the population balance equation was developed

by Tsouris and Scott[17] in FORTRAN. It uses the EPISODE package for

solving ordinary differential equations.[24]

Fractal Dimension of Particle Aggregates in Magnetic Fields 2847
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RESULTS AND DISCUSSION

Sticking Probability Array

Collision efficiencies were calculated at a uniform magnetic field from

Eqs. (6) and (8) for different conditions that have different magnetic dipole

forces. Three collision angles were used to obtain a sticking probability

array. Results of collision efficiencies for siderite, hematite, and goethite

particles of 0.25mm diameter at 240mV zeta potential, 0.1M NaCl ionic

strength, and 0.7 T magnetic field are shown in Table 1. The collision effi-

ciency in the direction parallel to the magnetic field (0 degrees) gives a

higher value, and the differences between collision efficiencies at different

angles for each species becomes more apparent when the magnetic suscepti-

bility is higher. The collision efficiencies with different collision angles form a

sticking probability array. An example of a sticking probability array for

magnetic susceptibility ¼ 0.002 is shown in Table 2. In a sticking probability

array, a particle (cluster) is located at the center element, four corner elements

in the table give the collision efficiency at 45 degrees, elements above and

below the particle show the collision efficiency at 0 degree, and elements

from the left and the right of the center element represent the collision effi-

ciency at 90 degrees. When two particles collide together, their boundaries

are checked with the sticking probability array. If the collision efficiency is

greater than one, they will stick together. If the collision efficiency is less or

equal than zero, they will not stick together. The collision efficiency

between zero and one is used as the probability of sticking in the simulation

program.

From Eq. (6), the collision efficiency is a function of the interparticle

potential integrated with the distance between the particles. However,

the magnetic dipole force is acting not only along the center between

Table 1. Collision efficiencies for different species and collision angles.

Species

Volumetric

magnetic

susceptibility

Collision

efficiency

at 08

Collision

efficiency

at 458

Collision

efficiency

at 908

Siderite 0.005 2.182 1.245 0

Hematite 0.002 1.077 0.833 0.584

Goethite 0.001 0.833 0.770 0.708

Notes: Ionic strength ¼ 0.1M, zeta potential ¼ 240mV, magnetic field strength ¼

0.7 T, Hamaker constant ¼ 5 � 10220 J, and ri ¼ rj ¼ 0.25mm.

Chin et al.2848
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particles but also normal to the centerline. Figure 2 shows the total

dimensionless potential, normalized by kT, at different angles a. At

a ¼ 458, the magnetic force is still attractive, while at 908 it becomes

repulsive (positive).

Table 2. Examples of the sticking probability array.

1.245 2.900 1.245

0 particle 0

1.245 2.900 1.245

0 14.070 0

0 particle 0

0 14.070 0

Notes: Hamaker constant ¼ 5 � 10220 J, ri ¼ rj ¼ 0.25mm,

volumetric magnetic susceptibility ¼ 0.002, and zeta

potential ¼ 240mV: (a), magnetic field strength ¼ 1T, ionic

strength ¼ 0.1M, (b) magnetic field strength ¼ 22.5 T, ionic

strength ¼ 0.001M.

Figure 2. Dimensionless total interparticle potential as a function of the angle

between the particle-particle centerline and the magnetic-field direction. (The calcu-

lations are not smooth at distances between 0.03 and 0.04mm because we are assuming

two regimes for the electrostatic potential.)
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Cluster-Cluster Aggregation Simulation

In the cluster-cluster aggregation model, all clusters are moving randomly

with a probability related to their size. When two particles collide, they stick

together. Furthermore, when a cluster collides with another cluster, they form

a new bigger cluster. Figure 3 shows simulation results of the cluster-

cluster aggregation model for a system with no magnetic forces present.

Figure 3. Simulation results using the cluster-cluster aggregation model without

magnetic forces; particle number ¼ 475, particle size ¼ 3 pixels: (a) simulation

step ¼ 10; (b) simulation step ¼ 1977.

Chin et al.2850
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For each cluster, its radius and number of particles inside the radius can be

measured. By plotting mass (number of sites occupied within a cluster) vs.

radius on a log-log scale, one can obtain the fractal dimension from the

slope. When a cluster collides with another cluster, the void space in the

new cluster will be bigger than the void space of a cluster colliding with a

particle.

Meakin[3] indicated that if Df ¼ d (Euclidean dimensionality with a value

of 2.0 for 2-D simulation), as clusters grow larger and larger they will

approach a constant limiting density. If Df , d, however, the density-

density correlation C(r) of the cluster will become smaller and smaller as

the cluster grows larger and larger. The simulation results of this work

agree with this trend. Figure 4a shows the density-density correlations func-

tion of different cluster radii obtained from the simulation. If the density-

density correlation is plotted vs. radius on a log-log scale, the slope will be

a constant and equal to (Df2 d ). Figure 4b shows the log-log result from

the simulation. It was found that (Df2 d ) ¼ 20.79. The theoretical fractal

dimension obtained from the density-density function should be around

(2.0–0.79) ¼ 1.21. Figure 4c gives Df ¼ 1.21 using the method of Eq. (1).

Effect of Magnetic Dipole Forces on Fractal Dimension

By comparing the systems with and without magnetic dipole forces, it

is found that the fractal dimension is smaller when magnetic dipole forces

are present. The magnetic dipole force between particles is attractive along

the direction of the magnetic field. Therefore, when the magnetic dipole

force is strong enough, it will make particles collide and stick in the direction

parallel to that of the magnetic field and form chain-like clusters. The fractal

dimension for different magnetic dipole forces was estimated with results

shown in Table 3. It was found that the fractal dimension decreases with

increasing magnetic susceptibility (or magnetic field).

Results on aggregate morphology are shown in Figs. 5a–c for 0.1 M ionic

strength, using the sticking probability arrays listed in Table 4. The aggregates

do not have a chain structure, even when the probability of aggregation in the

direction normal to the field is zero. The reason for this behavior is that the

aggregation probability at 458 is close to 1 as it is at 08. Thus, the simulation

should be extended to account for the tangential magnetic dipole force, which

could align the particles in the direction of magnetic field. Moreover, as the

particles aggregate, they should be allowed to move around each other for

the lowest energy situation. This has not been accounted in the modeling

approach so far. However, it can be seen that the clusters are closer to

chain-like aggregates at a higher magnetic-field strength.
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Figure 4. Initial particle number ¼ 600, simulation step ¼ 800, particle size ¼

3 pixels, Hamaker constant ¼ 5 � 10220 J, and zeta potential ¼ 260mV. (a) Density-

density correlation function of different cluster radii in cluster-cluster aggregation

model; (b) density-density correlation function vs. radius on log-log scale; (c) fractal

dimension of clusters.
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Effect of Fractal Dimension on Collision Efficiency and

Collision Frequency

Due to the fractal structure of the aggregates, their hydrodynamic

radius is larger than if they were spherical particles. Hence, according to

Eqs. (4)–(6), the collision efficiency is different from that of spherical

particles. The effect of fractal dimension on the collision frequency and

collision efficiency under Brownian diffusion is calculated in Figs. 6a and

b vs. the aggregate size ratio of spherical particles. The collision efficiency

and collision frequency of the fractal aggregates are normalized to those of

ideal spheres. Figure 6a shows that the normalized collision efficiency

decreases with increasing fractal dimension of aggregates. In our previous

studies,[25] it was found that the collision efficiency decreases with increas-

ing aggregate size ratio. For fractal objects, the smaller the fractal dimen-

sion is, the larger the hydrodynamic radius of the object becomes. Hence,

the aggregate size ratio of fractal objects decreases and the difference

in the collision efficiency increases as the fractal dimension decreases. In

Fig. 6b, it is found that the normalized collision frequency increases

rapidly when the fractal dimension is small. This phenomenon occurs

Table 3. Effect of magnetic dipole forces on fractal dimension.

(a) Volumetric magnetic susceptibility

Magnetic field strength (T) 0.005 0.002 0.001

Fractal dimension

0.1 1.188 1.234 1.246

1 1.219 1.208 1.185

2 1.288 1.198 1.104

(b) Volumetric magnetic susceptibility

Magnetic field strength (T) 0.005 0.002 0.001

Fractal dimension

22.5 1.231 1.326 2.000

25 1.190 1.086 0.908

Notes: Zeta potential ¼ 240mV, Hamaker constant ¼ 5 � 10220 J, and

ri ¼ rj ¼ 0.25mm: (a) ionic strength ¼ 0.1M, (b) ionic strength ¼ 0.001M.
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Figure 5. Simulation results showing the effect of field strength on the morphology

of aggregates. Arrows indicate the direction of magnetic field and their length are

proportional to the strength of the magnetic field. Particle number ¼ 600, simulation

step ¼ 800, particle size ¼ 3 pixels, volumetric magnetic susceptibility ¼ 0.002,

zeta potential ¼ 260mV, and Hamaker constant ¼ 5 � 10220 J. (a) Magnetic field

strength ¼ 0.1 T; (b) magnetic field strength ¼ 0.7 T; (c) magnetic field strength ¼ 1 T.
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because aggregates of small fractal dimension expand much faster than

those of large fractal dimension.

Fractal Dimension as a Function of Simulation Steps

The fractal dimension was calculated every two hundred simulation

steps and it was found to increase with the number of steps. After a longer

simulation time, the fractal dimension dropped to a steady value (Fig. 7).

A stable fractal dimension can be found when there are enough clusters in

the system. The fluctuations in the fractal dimension are due to the fact that

the number of clusters decreases as the simulation step increases. Spicer

et al.[26] indicated that the fractal dimension increases from 1.1 to 1.4 in

shear-induced flocculation for a 6h period. The simulation results of this

study are similar to the fractal dimension growth trend in their work.

Influence of Initial Particle Concentration

By varying the initial particle number of the same size particles, it was

found that the fractal dimension for varying particle population is different.

Table 4. Sticking probability array for different magnetic

field strength.

(a)

0.919 1.377 0.919

0 particle 0

0.919 1.377 0.919

(b)

0.833 1.077 0.833

0.584 particle 0.584

0.833 1.077 0.833

(c)

0.751 0.756 0.751

0.746 particle 0.746

0.751 0.756 0.751

Notes: Volumetric magnetic susceptibility ¼ 0.002,

Hamaker constant ¼ 5 � 10220 J, zeta potential ¼ 240mV,

ionic strength ¼ 0.1M, and ri ¼ rj ¼ 0.25mm; (a) magnetic

field strength ¼ 1 T, (b) magnetic field strength ¼ 0.7 T,

(c) magnetic field strength ¼ 0.1 T.
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The system with a higher initial particle number (or occupied lattice per unit

area) will have larger fractal dimension. Figures 4c and 8 show two regression

results with different initial particle populations. In Fig. 4c, 600 particles are

used in the simulation. After 800 steps, a fractal dimension of 1.28 is obtained.

In Fig. 8, 200 particles are used in the system. After 800 steps the fractal

Figure 6. Effect of fractal dimension on (a) collision efficiency normalized to the

collision efficiency of spherical aggregates (Df ¼ 3), and on (b) collision frequency

normalized to collision frequency of spherical aggregates. Zeta potential ¼ 260mV,

Hamaker constant ¼ 5 � 10220 J.
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dimension is about 1.038. The reason for this behavior is that for a higher

initial concentration, small particles can easily collide into a cluster; thus,

the fractal dimension becomes larger.

Meakin[3] used two different initial particle concentrations (initial particle

number per total lattice number) in their simulations. The observed fractal

dimension approached a limiting value when initial particle concentration

approaches zero. For higher concentration, they obtained a larger fractal

dimension. According to Figs. 4c and 8, the simulation results of the

present work agree with this conclusion.

Population Balance Equation

There are many input parameters for the population balance equation

model, including simulation time, number of volume classes, primary particle

size, initial number of particles, particle density and concentration, viscosity,

temperature, Hamaker constant, zeta potential, and ionic strength. Figure 9

shows a comparison of the increase in mean aggregate diameter with time

for fractal dimensions of 3.0 and 2.4. The experimental values of average

Figure 7. Effect of simulation steps on fractal dimension: particle number ¼ 600,

particle size ¼ 3 pixels, zeta potential ¼ 260mV, volumetric magnetic susceptibility ¼

0.002, magnetic field strength ¼ 1T, Hamaker constant ¼ 5 � 10220 J.
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particle diameter vs. time were obtained from Tsouris and Scott.[17] A fractal

dimension 3.0 (the solid line in Fig. 9) means that we do not consider the

fractal dimension effect in the population balance equation. The dashed line

is for a fractal dimension of 2.4, which is determined by implementing differ-

ent values of fractal dimension to the population-balance model to find the

best-fit since the cluster-cluster model developed in this work uses a two-

dimensional lattice system. With a smaller fractal dimension, aggregates

grow faster than with a larger fractal dimension and are closer to the exper-

imental values. Based on the results in Fig. 9, we conclude that the fractal

dimension is an important parameter for determining the average size of

particle aggregates with time.

SUMMARY AND CONCLUSIONS

Aggregates are often irregular in natural systems and can be treated as

fractal objects. A fractal dimension can be used to describe their structure.

The fractal dimension was introduced in a population-balance-equation

Figure 8. Effect of initial particle number on fractal dimension (in comparison with

Fig. 4c): particle number ¼ 200, particle size ¼ 3 pixels, zeta potential ¼ 260mV,

magnetic susceptibility ¼ 0.002, magnetic field strength ¼ 1T, and Hamaker constant ¼

5 � 10220 J.
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model to investigate the effect on the flocculation rate under Brownian diffu-

sion. It was found that the fractal dimension is an important parameter in floc-

culation kinetics. Systems with a smaller fractal dimension have a higher

flocculation rate, and the resulting mean aggregate diameter becomes bigger.

For a self-similar aggregate, a power-law relationship is obtained between

radius (length) and mass. Simulation results in this work were in agreement

with this power-law relationship. In the cluster-cluster aggregation model,

all clusters in the simulation system are selected with a collision probability

related to their size. The collision efficiency and frequency become larger

after the fractal dimension is considered in the simulation. The fractal dimen-

sion was obtained by plotting the relationship between density-density corre-

lation vs. radius of clusters on a log-log scale. The fractal dimension obtained

from the cluster-cluster aggregation model is between 1.0 and 1.6 for two-

dimensional aggregates. Simulation results also indicate that the morphology

of magnetized particles is different in a strong uniform magnetic field. The

fractal dimension is smaller when a magnetic force is present, which is due

to the chain formation of aggregates. The magnetic susceptibility of the

particles and magnetic-field strength were found to be important parameters

in this simulation.

Figure 9. Effect of fractal dimension on the growth of the average particle diameter

from the population balance equation. Magnetic field strength ¼ 6 Tesla (T), magnetic

susceptibility ¼ 0.002, Hamaker constant ¼ 5 � 10220 J, zeta potential ¼ 250mV,

and particle concentration ¼ 3.8mg/L.
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NOMENCLATURE

A Hamaker constant (J)

B magnetic field strength (T)

b relative mobility function

C(r) density-density correlation function

d embedding dimension

Df fractal dimension

D
1

diffusion coefficient in the absence of any interparticle forces

(m2 s21)

Dij
(0) relative diffusion coefficient (m2 s21)

e electron charge ¼ 1.6 � 10219C

Eij collision efficiency

Fij aggregation frequency (m3 s21)

I ionic strength of the solution (M)

i, j subscript to indicate the class of a cluster

k Boltzmann constant ¼ 1.38 � 10223 J K21

l shortest separation between two particles (m)

M mass of a cluster

N number of clusters classes in the system

Nbox(1) number of boxes intersected by the fractal object

ni, nj numbers of particles per unit volume in the cluster class i and j

r distance between particles (m)

R radius of a cluster (m)

ri, rj particle radii (m)

s dimensionless distance between two spheres

t time (s)

T absolute temperature (K)

VA total interparticle potential (VC)

Vel electrostatic potential (VC)

Vmag magnetic potential (VC)

Vvdw van der Waals potential (VC)

a angle between the particle centerline and the direction of the

magnetic field

bij collision frequency

xi, xj volumetric magnetic susceptibilities of particle i and j

1 box size that superimposed on the fractal object

1r permeability of medium ¼ 89 � 10210 (CV21m21) for water

k inverse of Debye length (m21)

m fluid viscosity (kgm21 s21)

mo magnetic permeability of vacuum (4p � 1027 VsA21m21)

Coi particle surface potential (V)
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